
Security Audit Report for Bhavish
Prediction Contracts

Date: October 24, 2022

Version: 1.0

Contact: contact@blocksec.com

mailto:contact@blocksec.com

Contents

1 Introduction 1
1.1 About Target Contracts . 1

1.2 Disclaimer . 2

1.3 Procedure of Auditing . 3

1.3.1 Software Security . 3

1.3.2 DeFi Security . 3

1.3.3 NFT Security . 4

1.3.4 Additional Recommendation . 4

1.4 Security Model . 4

2 Findings 6
2.1 Software Security . 6

2.1.1 Lack of access control to make predictions . 6

2.1.2 Being unable to remove markets . 8

2.1.3 Unhandled corner case when calculating rewards 9

2.1.4 No sanity checks for closed markets . 10

2.1.5 Incorrect argument passed to the refundUsers function 11

2.1.6 Ineffective prediction market updating . 12

2.2 DeFi Security . 13

2.2.1 No access control for the reinvest function . 13

2.2.2 Potential precision loss in share calculation . 13

2.2.3 Token balance manipulation in the AbstractPool contract 14

2.2.4 Locked admin fees . 15

2.2.5 Inconsistent state update . 16

2.2.6 Incorrect calculation for token balance changes . 17

2.3 Additional Recommendation . 17

2.3.1 Remove redundant checks . 18

2.3.2 Avoid mixed use of msg.sender and the msgSender function 18

2.3.3 Remove redundant calculation . 20

2.4 Note . 20

2.4.1 Do not change the multiplier parameter . 20

2.4.2 Ensure the functionality of the price manager . 21

2.4.3 Design of the BhavishNoLossPool contract . 21

2.4.4 Stateless assumption of the MinimalForwarder contract 22

2.4.5 RT market is closed on receiving invalid results . 23

i

Report Manifest

Item Description
Client Bhavish Finance
Target Bhavish Prediction Contracts

Version History

Version Date Description
1.0 October 24, 2022 First Release

About BlockSec BlockSec focuses on the security of the blockchain ecosystem and collaborates with

leading DeFi projects to secure their products. BlockSec is founded by top-notch security researchers and

experienced experts from both academia and industry. They have published multiple blockchain security

papers in prestigious conferences, reported several zero-day attacks of DeFi applications, and successfully

protected digital assets that are worth more than 5 million dollars by blocking multiple attacks. They can

be reached at Email, Twitter and Medium.

ii

https://www.blocksec.com
mailto:contact@blocksec.com
https://twitter.com/BlockSecTeam
https://blocksecteam.medium.com/

Chapter 1 Introduction

1.1 About Target Contracts

Information Description
Type Smart Contract
Language Solidity
Approach Semi-automatic and manual verification

The target of this audit is the Bhavish Prediction Contracts 1 of the Bhavish Protocol. It is a prediction

market that enables the users to make predictions on the future prices of various assets. The users may

make profits if the predictions are correct. During the audit, some extra files (that were not included in the

initial commit) were added, which are out of the audit scope. Specifically, the files covered in this audit are

specified in the following table:

Folder Name Contract File Name

Automation

ChainlinkPredictionOps.sol

GelatoPredictionOps.sol

EquitiesPredictionOpsManager.sol

PredictionOpsManager

Impl

BhavishAdministrator.sol

BhavishValidContracts.sol

PriceManager.sol

Impl/BhavishSDK

AbstractBhavishSDK.sol

ERC20SDK.sol

NativeSDK.sol

Impl/BhavishPrediction

AbstractLossy.sol

AbstractNative.sol

AbstractPrediction.sol

BhavishPredictionStorage.sol

AbstractNoLoss.sol

Impl/BhavishPrediction/Equities

AbstractEP.sol

LossyEP.sol

NativeEP.sol

NoLosseEP.sol

Impl/BhavishPrediction/Crypto

AbstractCP.sol

LossyCP.sol

NativeCP.sol

NoLossCP.sol

Impl/BhavishRealTimePrediction AbstractRT.sol

Continued on next page

1https://github.com/Bhavish-finance/prediction-contract

1

https://github.com/Bhavish-finance/prediction-contract

Continued from previous page

Folder Name Contract File Name

Impl/BhavishRealTimePrediction

LossyRT.sol

NativeRT.sol

NoLossRT.sol

Integrations

Gasless/BaseRelayRecipient.sol

Gasless/IRelayRecipient.sol

MinimalForwarder/MinimalForwarder.sol

Swap/BhavishSwap.sol

YieldFarming/YieldFarming.sol

Interface

IBhavishAdministrator.sol

IBhavishERC20SDK.sol

IBhavishPrediction.sol

IBhavishSDK.sol

IPriceManager.sol

Pool

AbstractPool.sol

BhavishLossyPool.sol

BhavishNoLossPool.sol

BhavishReInvest.sol

Rewards BhavishPredictionRewards.sol

Tokens

BhavishGameToken.sol

BhavishNoLossGameToken.sol

BhavishRewardToken.sol

Vault

BaseVault.sol

BhavishLossyVault.sol

BhavishNativeVault.sol

VaultProtector.sol

The auditing process is iterative. Specifically, we would audit the commits that fix the discovered

issues. If there are new issues, we will continue this process. The commit SHA values during the audit are

shown in the following table. Our audit report is responsible for the code in the initial version (Version 1),

as well as new code (in the following versions) to fix issues in the audit report.

Project Version Commit Hash

predict-contract
Version 1 6791e2f5bcaf0b8294bc6262ba051ed933d9ff53

Version 2 3c7841b6e60082b22d2a8bfae54f6f6f1bf1962d

1.2 Disclaimer

This audit report does not constitute investment advice or a personal recommendation. It does not

consider, and should not be interpreted as considering or having any bearing on, the potential economics

of a token, token sale or any other product, service or other asset. Any entity should not rely on this report

2

in any way, including for the purpose of making any decisions to buy or sell any token, product, service or

other asset.

This audit report is not an endorsement of any particular project or team, and the report does not

guarantee the security of any particular project. This audit does not give any warranties on discovering

all security issues of the smart contracts, i.e., the evaluation result does not guarantee the nonexistence

of any further findings of security issues. As one audit cannot be considered comprehensive, we always

recommend proceeding with independent audits and a public bug bounty program to ensure the security

of smart contracts.

The scope of this audit is limited to the code mentioned in Section 1.1. Unless explicitly specified,

the security of the language itself (e.g., the solidity language), the underlying compiling toolchain and the

computing infrastructure are out of the scope.

1.3 Procedure of Auditing

We perform the audit according to the following procedure.

- Vulnerability Detection We first scan smart contracts with automatic code analyzers, and then

manually verify (reject or confirm) the issues reported by them.

- Semantic Analysis We study the business logic of smart contracts and conduct further investiga-

tion on the possible vulnerabilities using an automatic fuzzing tool (developed by our research team).

We also manually analyze possible attack scenarios with independent auditors to cross-check the

result.

- Recommendation We provide some useful advice to developers from the perspective of good

programming practice, including gas optimization, code style, and etc.

We show the main concrete checkpoints in the following.

1.3.1 Software Security

∗ Reentrancy

∗ DoS

∗ Access control

∗ Data handling and data flow

∗ Exception handling

∗ Untrusted external call and control flow

∗ Initialization consistency

∗ Events operation

∗ Error-prone randomness

∗ Improper use of the proxy system

1.3.2 DeFi Security

∗ Semantic consistency

∗ Functionality consistency

∗ Permission management

∗ Business logic

3

∗ Token operation

∗ Emergency mechanism

∗ Oracle security

∗ Whitelist and blacklist

∗ Economic impact

∗ Batch transfer

1.3.3 NFT Security

∗ Duplicated item

∗ Verification of the token receiver

∗ Off-chain metadata security

1.3.4 Additional Recommendation

∗ Gas optimization

∗ Code quality and style�
Note The previous checkpoints are the main ones. We may use more checkpoints during the auditing

process according to the functionality of the project.

1.4 Security Model

To evaluate the risk, we follow the standards or suggestions that are widely adopted by both industry

and academy, including OWASP Risk Rating Methodology 2 and Common Weakness Enumeration 3.

The overall severity of the risk is determined by likelihood and impact. Specifically, likelihood is used to

estimate how likely a particular vulnerability can be uncovered and exploited by an attacker, while impact

is used to measure the consequences of a successful exploit.

In this report, both likelihood and impact are categorized into two ratings, i.e., high and low respec-

tively, and their combinations are shown in Table 1.1.

Table 1.1: Vulnerability Severity Classification

Im
pa

ct

High High Medium

Low Medium Low

High Low

Likelihood

2https://owasp.org/www-community/OWASP_Risk_Rating_Methodology

3https://cwe.mitre.org/

4

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://cwe.mitre.org/

Accordingly, the severity measured in this report are classified into three categories: High, Medium,

Low. For the sake of completeness, Undetermined is also used to cover circumstances when the risk

cannot be well determined.

Furthermore, the status of a discovered item will fall into one of the following four categories:

- Undetermined No response yet.

- Acknowledged The item has been received by the client, but not confirmed yet.

- Confirmed The item has been recognized by the client, but not fixed yet.

- Fixed The item has been confirmed and fixed by the client.

5

Chapter 2 Findings

In total, we find twelve potential issues. We also have three recommendations and five notes.

- High Risk: 6

- Medium Risk: 3

- Low Risk: 3

- Recommendation: 3

- Note: 5

ID Severity Description Category Status
1 High Lack of access control to make predictions Software Security Fixed
2 Low Being unable to remove markets Software Security Fixed

3 Low
Unhandled corner case when calculating re-
wards

Software Security Confirmed

4 Medium No sanity checks for closed markets Software Security Fixed

5 Medium
Incorrect argument passed to the refundUsers

function
Software Security Fixed

6 Low Ineffective prediction market updating Software Security Fixed
7 High No access control for the reinvest function DeFi Security Fixed
8 High Potential precision loss in share calculation DeFi Security Fixed

9 High
Token balance manipulation in the
AbstractPool contract

DeFi Security Fixed

10 Medium Locked admin fees DeFi Security Fixed
11 High Inconsistent state update DeFi Security Fixed

12 High
Incorrect calculation for token balance
changes

DeFi Security Fixed

13 - Remove redundant checks Recommendation Acknowledged

14 -
Avoid mixed use of msg.sender and the
msgSender function

Recommendation Fixed

15 - Remove redundant calculation Recommendation Fixed
16 - Do not change the multiplier parameter Note -
17 - Ensure the functionality of the price manager Note -
18 - Design of the BhavishNoLossPool contract Note -

19 -
Stateless assumption of the MinimalForwarder

contract
Note -

20 - RT market is closed on receiving invalid results Note -

The details are provided in the following sections.

2.1 Software Security

2.1.1 Lack of access control to make predictions

Severity High

Status Fixed in Version 2

Introduced by Version 1

6

Description In the AbstractLossy and AbstractNoLoss contracts, the public functions predictUp and

predictDown do not have any access control. It means that anyone can make predictions for other users

without their permissions.

30 function predictUp(

31 uint256 _predictRoundId,

32 address _userAddress,

33 uint256 _amount

34) external override whenNotPaused nonReentrant {

35 token.safeTransferFrom(_userAddress, address(this), _amount);

36 _predictUp(_predictRoundId, _userAddress, _amount);

37 }

38
39 function predictDown(

40 uint256 _predictRoundId,

41 address _userAddress,

42 uint256 _amount

43) external override whenNotPaused nonReentrant {

44 token.safeTransferFrom(_userAddress, address(this), _amount);

45 _predictDown(_predictRoundId, _userAddress, _amount);

46 }

Listing 2.1: AbstractLossy.sol

33 function predictUp(

34 uint256 _predictRoundId,

35 address _userAddress,

36 uint256 _amount

37) external override whenNotPaused nonReentrant {

38 token.safeTransferFrom(_userAddress, address(this), _amount);

39 _predictUp(_predictRoundId, _userAddress, _amount);

40 }

41
42 /**

43 * @notice Bet Bear position

44 * @param _predictRoundId Round Id

45 * @param _userAddress Address of the user

46 */

47 function predictDown(

48 uint256 _predictRoundId,

49 address _userAddress,

50 uint256 _amount

51) external override whenNotPaused nonReentrant {

52 token.safeTransferFrom(_userAddress, address(this), _amount);

53 _predictDown(_predictRoundId, _userAddress, _amount);

54 }

Listing 2.2: AbstractNoLoss.sol

Note that the ERC20SDK contract also has the similar problem. The predict function in the contract

does not have any access control either.

35 function predict(

36 PredictionStruct memory _predStruct,

7

37 address _userAddress,

38 address _provider,

39 uint256 _amount

40) external override {

41 IBhavishPredictionERC20 bhavishPrediction = _getERC20PredictionMap(

42 predictionMap[_predStruct.underlying][_predStruct.strike]

43);

44
45 require(address(bhavishPrediction) != address(0), "Prediction Market for the asset is not

present");

46 require(activePredictionMap[bhavishPrediction], "Prediction Market for the asset is not

active");

47
48 address userAddress_;

49 if (address(msg.sender).isContract()) {

50 userAddress_ = _userAddress;

51 } else {

52 require(msg.sender == _userAddress, "Buyer and msg.sender cannot be different");

53 userAddress_ = msg.sender;

54 }

55
56 if (_predStruct.directionUp) bhavishPrediction.predictUp(_predStruct.roundId, userAddress_,

_amount);

57 else bhavishPrediction.predictDown(_predStruct.roundId, userAddress_, _amount);

58
59 _populateProviderInfo(_provider, _amount);

60 }

Listing 2.3: ERC20SDK.sol

Impact Anyone can arbitrarily make predictions for other users.

Suggestion Apply some access control mechanism.

2.1.2 Being unable to remove markets

Severity Low

Status Fixed in Version 2

Introduced by Version 1

Description The EquitiesPredictionOpsManager and the PredictionOpsManager contracts are used for

off-chain bots to automatically execute rounds for the prediction markets. The markets must be registered

for query and execution using the setPredicitionMarket function. However, there is no way to disable or

remove a registered prediction market.

16 constructor(IBhavishEquitiesPrediction[] memory _bhavishPrediction) {

17 for (uint256 i = 0; i < _bhavishPrediction.length; i++) {

18 setPredicitionMarket(_bhavishPrediction[i]);

19 }

20 }

21
22 function setPredicitionMarket(IBhavishEquitiesPrediction _bhavishPredicition) public onlyOwner

{

8

23 require(address(_bhavishPredicition) != address(0), "Invalid predicitions");

24
25 predictionMarkets.push(_bhavishPredicition);

26 }

Listing 2.4: EquitiesPredictionOpsManager.sol

12 constructor(IBhavishPrediction[] memory _bhavishPrediction) {

13 for (uint256 i = 0; i < _bhavishPrediction.length; i++) {

14 setPredicitionMarket(_bhavishPrediction[i]);

15 }

16 }

17
18 function setPredicitionMarket(IBhavishPrediction _bhavishPredicition) public onlyOwner {

19 require(address(_bhavishPredicition) != address(0), "Invalid predicitions");

20
21 predictionMarkets.push(_bhavishPredicition);

22 }

Listing 2.5: PredictionOpsManager.sol

Impact Unused prediction markets cannot be removed.

Suggestion Add a governance function to remove unused prediction markets.

2.1.3 Unhandled corner case when calculating rewards

Severity Low

Status Confirmed

Introduced by Version 1

Description In the _calculateRewards function of the AbstractPrediction contract (at line 343 and

353), the condition where rewardAmount <= treasuryAmt is not considered. Because treasuryAmt is de-

rived from round.totalAmount, rewardAmount of the round may be smaller than treasuryAmt. For example,

in the AbstractNoLoss contract, rewardAmount is either upPredictAmount or downPredictAmount. In this

case, treasuryAmt can be larger than rewardAmount, so the fees are charged regardless of rewardAmount.

331 function _calculateRewards(uint256 _predictRoundId) internal {

332 Round memory round = bhavishPredictionStorage.getPredictionRound(_predictRoundId);

333 require(round.roundState == RoundState.ENDED, "Round is not ended");

334
335 uint256 rewardAmount = _getRoundRewardAmount(round);

336 uint256 treasuryAmt = (round.totalAmount * treasuryFee) / (10**decimals);

337
338 uint256 rewardBaseCalAmount;

339 // Bull wins

340 if (round.endPrice > round.startPrice) {

341 rewardBaseCalAmount = round.upPredictAmount;

342 // reward amount can be zero while treasury can be greater than reward for few cases

343 if (rewardAmount > 0 && rewardAmount > treasuryAmt) rewardAmount = rewardAmount -

treasuryAmt;

344 // case when there are no bets on winning side. loosing side bets should be moved to

treasury

9

345 if (rewardBaseCalAmount == 0) {

346 treasuryAmt = round.downPredictAmount;

347 rewardAmount = 0;

348 }

349 }

350 // Bear wins

351 else if (round.endPrice < round.startPrice) {

352 rewardBaseCalAmount = round.downPredictAmount;

353 if (rewardAmount > 0 && rewardAmount > treasuryAmt) rewardAmount = rewardAmount -

treasuryAmt;

354 // case when there are no bets on winning side. loosing side bets should be moved to

treasury

355 if (rewardBaseCalAmount == 0) {

356 treasuryAmt = round.upPredictAmount;

357 rewardAmount = 0;

358 }

359 }

360 // draw or tie

361 else {

362 rewardBaseCalAmount = 0;

363 rewardAmount = 0;

364 }

365
366 treasuryAmount += treasuryAmt;

367 bhavishPredictionStorage.setRewardAmountForRound(_predictRoundId, rewardAmount,

rewardBaseCalAmount);

368
369 _updateCalculateRewards(rewardAmount + treasuryAmt, treasuryAmt);

370
371 emit RewardsCalculated(_predictRoundId, rewardBaseCalAmount, rewardAmount, treasuryAmt);

372 }

Listing 2.6: AbstractPrediction.sol

Impact It may lead to unexpected results due to the incorrect calculations of the fees and the reward

amount.

Suggestion Take the corner case into consideration in the _calculateRewards function.

Feedback from the Project This will be a smaller amount, so users get the rewards without treasury

fee. We are happy to give this smaller winning amount without treasury fee in noLoss.

2.1.4 No sanity checks for closed markets

Severity Medium

Status Fixed in Version 2

Introduced by Version 1

Description In the _placeBet function of the AbstractRT contract, the close timestamp of the market is

not considered. Specifically, there exists a case that the market has closed (i.e., the close timestamp of

the market has reached) but not resolved (i.e., the resolveMarket function is not called). In such a case,

users can place bets on a market that should have been closed. Because the result has been revealed

(i.e., the return value of resulfFor function can be queried), users can always make correct predictions.

10

167 function _placeBet(

168 uint256 _marketId,

169 uint256 _outcomeId,

170 uint256 _amount,

171 address _provider

172) internal {

173 Market storage market = markets[_marketId];

174 require(block.timestamp >= market.opensAtTimestamp, "market not opened yet");

175 require(market.state == MarketState.OPEN, "event not open for prediction");

176 require(_outcomeId < market.outcomeIds.length, "invalid outcome");

177
178 market.balance += _amount;

179 market.outcomes[_outcomeId].amount += _amount;

180 market.outcomes[_outcomeId].traderStakes[msgSender()] += _amount;

181 userMarkets[msgSender()].push(_marketId);

182
183 emit BetPlaced(msgSender(), _marketId, _outcomeId, _amount);

184 emit ProviderInfo(_provider, _amount);

185 }

Listing 2.7: AbstractRT.sol

Impact It may allow the users to always predict correct results.

Suggestion Prevent users from placing bets on markets that have been closed.

2.1.5 Incorrect argument passed to the refundUsers function

Severity Medium

Status Fixed in Version 2

Introduced by Version 1

Description The performRefund function of the BhavishLossyVault contract is used to refund multiple

rounds in a batch for the vault. However, when the function calls the refundUsers function of the Bhavish

SDK, the round ID is always the first item in the roundIds array (see line 76 in the following code snippet).

70 function performRefund(uint256[] calldata roundIds) external override onlyOperator(msg.sender)

{

71 uint256 beforeBalance = address(this).balance;

72
73 for (uint256 i = 0; i < roundIds.length; i++) {

74 bhavishSDK.refundUsers(

75 IBhavishSDK.PredictionStruct(assetPair.underlying, assetPair.strike, 0, false),

76 roundIds[0]

77);

78 }

79
80 uint256 totalRefundAmount = address(this).balance - beforeBalance;

81 vaultDeposit.totalDeposit += totalRefundAmount;

82 }

Listing 2.8: BhavishLossyVault.sol

11

Impact The performRefund function would only refund the first round provided in the roundIds parameter.

Suggestion Fix the roundIds iteration logic.

2.1.6 Ineffective prediction market updating

Severity Low

Status Fixed in Version 2

Introduced by Version 1

Description AbstractBhavishSDK is the parent contract for all the SDKs, including NativeSDK and ERC20SDK.

Specifically, the AbstractBhavishSDK contract records the active prediction markets in a variable named

activePredictionMap. However, in the updatePredictionMarket function of the AbstractBhavishSDK con-

tract, when the prediction contract for a given pair is updated, the activePredictionMap variable is not

updated accordingly. As a result, the newly updated prediction market cannot be used.

56 function updatePredictionMarket(

57 IBhavishPrediction _bhavishPrediction,

58 bytes32 _underlying,

59 bytes32 _strike

60) external onlyAdmin(msg.sender) {

61 require(address(predictionMap[_underlying][_strike]) != address(0), "Prediction market

doesn’t exist");

62 predictionMap[_underlying][_strike] = _bhavishPrediction;

63 }

Listing 2.9: AbstractBhavishSDK.sol

As shown in the below code snippet, any prediction on the underlying and the strike pair would

check activePredictionMap. Therefore, invoking the predict function on an updated market would revert

because predictionMap is modified while activePredictionMap is not updated accordingly.

43 function predict(

44 PredictionStruct memory _predStruct,

45 address _userAddress,

46 address _provider

47) external payable override {

48 IBhavishPrediction bhavishPrediction = predictionMap[_predStruct.underlying][_predStruct.

strike];

49
50 require(address(bhavishPrediction) != address(0), "Prediction Market for the asset is not

present");

51 require(activePredictionMap[bhavishPrediction], "Prediction Market for the asset is not

active");

52
53 address userAddress_;

54 if (address(msg.sender).isContract()) {

55 userAddress_ = _userAddress;

56 } else {

57 require(msg.sender == _userAddress, "Buyer and msg.sender cannot be different");

58 userAddress_ = msg.sender;

59 }

60

12

61 if (_predStruct.directionUp) bhavishPrediction.predictUp{ value: msg.value }(_predStruct.

roundId, userAddress_);

62 else bhavishPrediction.predictDown{ value: msg.value }(_predStruct.roundId, userAddress_);

63
64 _populateProviderInfo(_provider, msg.value);

65 }

Listing 2.10: NativeSDK.sol

Impact The prediction market update would be ineffective and the corresponding underlying-strike pair

would be unusable.

Suggestion Properly update the activePredictionMap variable.

2.2 DeFi Security

2.2.1 No access control for the reinvest function

Severity High

Status Fixed in Version 2

Introduced by Version 1

Description The reinvest function of the BhavishReInvest contract does not have any access control.

20 function reinvest(address _user) external {

21 uint256 beforeBalance = address(this).balance;

22 pool.claimWinningRewards(_user);

23 uint256 afterBalance = address(this).balance;

24 pool.deposit{ value: (afterBalance - beforeBalance) }(_user);

25 }

Listing 2.11: BhavishReInvest.sol

Impact User rewards can be arbitrarily claimed.

Suggestion Use a whitelist or disable arbitrarily claiming rewards for others.

2.2.2 Potential precision loss in share calculation

Severity High

Status Fixed in Version 2

Introduced by Version 1

Description There is a precision loss in the convertToShares function of the AbstractPool contract. At

line 117 in the following code snippet, there would be a precision loss because the number of shares is

calculated by _amount / 10**yieldToken.decimals(). The _amount parameter represents the “amount of

tokens”, which may have the same precision as the yield token. In this case, the number of shares being

calculated is actually “the number of tokens” without any precision. For example, if _amount is 1e18 (which

means 1 token), the number of shares would be exactly 1 without any precision. Hence there exist three

cases which may lead to financial losses to the users, as follows:

13

If there is no share in the pool (i.e., poolData.shares is zero), the number of shares being calculated

will always be zero if the deposit amount is less than 10**yieldToken.decimals().

Even if the number of shares in the pool is not zero, the deposits that are not exactly integer multiples

of 10**yieldToken.decimals() would suffer from precision losses as well. Because the decimals

part would be lost.

An attacker can reinvest other users’ rewards which are less than 10**yieldToken.decimals() (see

Issue 2.2.1) to make the rewards distributed to all the stakers (i.e., their numbers of shares are

greater than zero).

112 function convertToShares(uint256 _amount) public view returns (uint256) {

113 IERC20Extended yieldToken = IERC20Extended(farm.getYieldToken());

114 uint256 supply = poolData.shares;

115 return

116 (_amount == 0 || supply == 0)

117 ? _amount.mulDiv(1e0, 10**yieldToken.decimals(), Math.Rounding.Down)

118 : _amount.mulDiv(supply, totalAssets(), Math.Rounding.Down);

119 }

Listing 2.12: AbstractPool.sol

Impact May lead to financial losses to the users.

Suggestion Revise the share calculation.

2.2.3 Token balance manipulation in the AbstractPool contract

Severity High

Status Fixed in Version 2

Introduced by Version 1

Description In the getProfit function of the AbstractPool contract, the return value of the function is

calculated by the yield token balance of this contract minus the total reserves recorded in the contract

(i.e., values recorded in poolData). Therefore, the result can be manipulated by directly transferring the

yield token to the contract. The manipulation may cause negative effects like the issue in the Compound

Protocol 1.

165function getProfit() public view returns (uint256 profit) {

166 profit =

167 IERC20Extended(farm.getYieldToken()).balanceOf(address(this)) -

168 (poolData.totalLiquidity + poolData.providerPoolProfit + poolData.rewardPool + poolData.

protocolPool);

169}

Listing 2.13: AbstractPool.sol

Impact Token balance manipulation may lead to unexpected results.

Suggestion N/A

1https://blog.openzeppelin.com/compound-comprehensive-protocol-audit/#ceth-and-cerc20-underlying-

balances-can-be-manipulated

14

https://blog.openzeppelin.com/compound-comprehensive-protocol-audit/#ceth-and-cerc20-underlying -balances-can-be-manipulated
https://blog.openzeppelin.com/compound-comprehensive-protocol-audit/#ceth-and-cerc20-underlying -balances-can-be-manipulated

2.2.4 Locked admin fees

Severity Medium

Status Fixed in Version 2

Introduced by Version 1

Description The BhavishLossyPool contract allows users to swap the native token for BhavishGameToken.

The depositForAdmin function is used to record the admin fees, while the withdrawForAdmin function is

used to withdraw those fees. However, the admin fees would be locked due to the flawed logic of the

withdrawForAdmin function.

Specifically, this contract maintains two accounting systems, i.e., the token accounting system and the

native accounting system stored in a mapping variable named providers, respectively. When one user

deposit, the contract will mint BhavishGameToken to the user and make providers[user].amount increase

simultaneously. However, the depositForAdmin function only adds the providers[user].amount without

minting BhavishGameToken, which means the corresponding balance of the token accounting system re-

mains unchanged.

49 function depositForAdmin(uint256 _amount) external {

50 require(predictionContracts[msg.sender], "invalid caller");

51 ProviderDetails storage provider = providers[admin];

52 provider.amount += _amount;

53}

Listing 2.14: BhavishLossyPool.sol

As a result, when invoking the withdrawForAdmin function, zero balance would be transferred to the

user (at line 133 of Listing 2.16).

55 function withdrawForAdmin(address _admin) external nonReentrant {

56 require(_admin == address(admin), "cannot withdraw");

57 _withdraw(_admin);

58}

Listing 2.15: BhavishLossyPool.sol

130 function _withdraw(address _user) internal {

131 ProviderDetails storage provider = providers[_user];

132 require(provider.date + poolData.liquidityLockupDuration <= block.timestamp, "cannot withdraw

with in lockup");

133 uint256 balance = _getAmountToTransfer(_user);

134 uint256 rewards = getAPYRewards(_user);

135
136 if (provider.date + poolData.rewardLockupDuration <= block.timestamp) {

137 _withdrawFromFarm(rewards + balance, _user);

138 // deduct provider pool profit

139 emit ClaimAPY(_user, rewards);

140 } else {

141 _withdrawFromFarm(balance, _user);

142 poolData.protocolPool += rewards;

143 }

144 // update pool data

145 poolData.totalLiquidity -= getBalance(_user) / poolData.multiplier;

15

146 poolData.providerPoolProfit -= rewards;

147 provider.amount = 0;

148 poolData.shares -= provider.shares;

149 provider.shares = 0;

150
151 afterWithdraw();

152
153 emit Withdraw(msg.sender, balance);

154}

Listing 2.16: AbstractPool.sol

19 function _getAmountToTransfer(address _user) internal view override returns (uint256) {

20 return balanceOf(_user) / poolData.multiplier;

21 }

Listing 2.17: BhavishLossyPool.sol

Impact The admin fees in the BhavishLossyPool contract will be locked.

Suggestion Revise the code logic.

2.2.5 Inconsistent state update

Severity High

Status Fixed in Version 2

Introduced by Version 1

Description In the BhavishNativeVault contract, the userDeposits variable is updated at the end of the

withdraw function. However, this step is missing in the withdrawAsset function of the BhavishLossyVault.

105 function withdraw(uint256 _shares) external nonReentrant {

106 uint256 assetAmount = _withdrawFromVault(_shares);

107 _safeTransfer(msg.sender, assetAmount);

108 vaultDeposit.userDeposits[msg.sender] = convertToAssets(vaultDeposit.userShares[msg.sender])

;

109 }

Listing 2.18: BhavishNativeVault.sol

95 function withdrawAsset(uint256 shares) external nonReentrant {

96 uint256 _amount = convertToAssets(shares);

97
98 require(_amount <= bgToken.balanceOf(address(this)), "cannot withdraw > contract balance");

99
100 _withdrawFromVault(shares);

101 }

Listing 2.19: BhavishLossyVault.sol

Impact The BhavishLossyVault may not function as expected.

Suggestion Make the state update be consistent with each other.

16

2.2.6 Incorrect calculation for token balance changes

Severity High

Status Fixed in Version 2

Introduced by Version 1

Description In the AbstractLossy prediction market contract, the market refunds users with GameToken

(through the _amountTransfer function).

82 function _amountTransfer(address _user, uint256 _amount) internal override {

83 token.safeTransfer(_user, _amount);

84 }

Listing 2.20: AbstractLossy.sol

However, in the performRefund function of the BhavishLossyVault contract, totalRefundAmount is

calculated based on address(this).balance rather than the token balance. The same issue also exists in

the performClaim function of the BhavishLossyVault.

70 function performRefund(uint256[] calldata roundIds) external override onlyOperator(msg.sender) {

71 uint256 beforeBalance = address(this).balance;

72
73 for (uint256 i = 0; i < roundIds.length; i++) {

74 bhavishSDK.refundUsers(

75 IBhavishSDK.PredictionStruct(assetPair.underlying, assetPair.strike, 0, false),

76 roundIds[0]

77);

78 }

79
80 uint256 totalRefundAmount = address(this).balance - beforeBalance;

81 vaultDeposit.totalDeposit += totalRefundAmount;

82}

Listing 2.21: BhavishLossyVault.sol

61 function performClaim(uint256[] calldata roundIds) external override onlyOperator(msg.sender) {

62 uint256 beforeBalance = address(this).balance;

63
64 bhavishSDK.claim(IBhavishSDK.PredictionStruct(assetPair.underlying, assetPair.strike, 0, false

), roundIds);

65
66 uint256 claimedAmount = address(this).balance - beforeBalance;

67 vaultDeposit.totalDeposit += claimedAmount;

68}

Listing 2.22: BhavishLossyVault.sol

Impact The token balance changes of the contract cannot be correctly calculated.

Suggestion Revise the code logic.

2.3 Additional Recommendation

17

2.3.1 Remove redundant checks

Status Acknowledged

Introduced by Version 1

Description In the AbstractEP contract, the checks curRound.roundState != RoundState.CANCELLED in

line 186 and line 190 are unnecessary because they are checked in line 181.

167 function closeCurrentRound() private returns (uint256 closingPrice) {

168 Round memory curRound = bhavishPredictionStorage.getPredictionRound(currentRoundId);

169
170 // currentRoundId refers to current round n

171 // fetch price to end current round and start new round

172 (closingPrice,) = bhavishPriceManager.getPrice(

173 assetPair.underlying,

174 assetPair.strike,

175 curRound.roundEndTimestamp

176);

177
178 if (

179 curRound.roundState == RoundState.CREATED ||

180 curRound.roundState == RoundState.ENDED ||

181 curRound.roundState == RoundState.CANCELLED

182) return closingPrice;

183
184 // End and Disperse current round

185 // skip for non current rounds

186 if (curRound.roundState != RoundState.CANCELLED && closingPrice != 0) {

187 _endRound(currentRoundId, closingPrice);

188
189 _calculateRewards(currentRoundId);

190 } else if (curRound.roundState != RoundState.CANCELLED && closingPrice == 0) {

191 _cancelRound(currentRoundId);

192 }

193 }

Listing 2.23: AbstractEP.sol

Impact N/A

Suggestion Remove redundant checks.

2.3.2 Avoid mixed use of msg.sender and the msgSender function

Status Fixed in Version 2

Introduced by Version 1

Description In the AbstractRT contract, the msgSender function is used to support the gasless transac-

tion feature 2. However, there is a mixed usage of msg.sender and the msgSender function. Specifically,

the _placeBet internal function can collaborate with gasless transactions feature, while the claim function

cannot (otherwise, the claimed rewards would be locked in the delegate contract).

2The concept is similar to EIP-2771: https://eips.ethereum.org/EIPS/eip-2771, which allows a trusted contract to delegate
user requests.

18

https://eips.ethereum.org/EIPS/eip-2771

167 function _placeBet(

168 uint256 _marketId,

169 uint256 _outcomeId,

170 uint256 _amount,

171 address _provider

172) internal {

173 Market storage market = markets[_marketId];

174 require(block.timestamp >= market.opensAtTimestamp, "market not opened yet");

175 require(market.state == MarketState.OPEN, "event not open for prediction");

176 require(_outcomeId < market.outcomeIds.length, "invalid outcome");

177
178 market.balance += _amount;

179 market.outcomes[_outcomeId].amount += _amount;

180 market.outcomes[_outcomeId].traderStakes[msgSender()] += _amount;

181 userMarkets[msgSender()].push(_marketId);

182
183 emit BetPlaced(msgSender(), _marketId, _outcomeId, _amount);

184 emit ProviderInfo(_provider, _amount);

185 }

186
187 function getRewards(uint256 _marketId, address _user) public view override returns (uint256

rewards, bool claimed) {

188 Market storage market = markets[_marketId];

189 MarketOutcome storage outcome = market.outcomes[market.resolution.outcomeId];

190 claimed = outcome.claimed[msg.sender];

191
192 if (market.state == MarketState.RESOLVED && !claimed)

193 rewards = (outcome.traderStakes[_user] * market.reward) / outcome.amount;

194 }

195
196 function claim(uint256 _marketId) external {

197 Market storage market = markets[_marketId];

198 require(market.state != MarketState.OPEN, "event still open");

199 MarketOutcome storage outcome = market.outcomes[market.resolution.outcomeId];

200
201 require(outcome.claimed[msg.sender] == false, "user already claimed");

202 require(outcome.traderStakes[msg.sender] > 0, "no predict amount for user");

203 (uint256 rewards,) = getRewards(_marketId, msg.sender);

204
205 outcome.claimed[msg.sender] = true;

206 uint256 traderAmount = outcome.traderStakes[msg.sender];

207
208 _claim(_marketId, traderAmount, rewards);

209 }

Listing 2.24: AbstractRT.sol

Impact May lead to misunderstanding or misuse.

Suggestion Revise the code logic.

19

2.3.3 Remove redundant calculation

Status Fixed in Version 2

Introduced by Version 1

Description There are unnecessary calculation in the _calcAmount function of the BhavishLossyPool

contract.

23 function getAPYRewards(address _provider) public view override returns (uint256 rewards) {

24 if (_calcAmount(_provider) > (balanceOf(_provider) / poolData.multiplier)) {

25 rewards = _calcAmount(_provider) - (balanceOf(_provider) / poolData.multiplier);

26 }

27 }

28
29 function getBalance(address _provider) public view override returns (uint256 amount) {

30 amount = balanceOf(_provider);

31 }

32
33 function _calcAmount(address _provider) internal view returns (uint256) {

34 uint256 amount = convertToAssets(providers[_provider].shares);

35 if (amount > providers[_provider].amount)

36 // APY on deposited amount + bg token balance

37 return (balanceOf(_provider) / poolData.multiplier) + amount - providers[_provider].

amount;

38 return balanceOf(_provider) / poolData.multiplier;

39 }

Listing 2.25: BhavishLossyPool.sol

Impact Redundant calculation may cause extra gas usage and logical misleading.

Suggestion Remove redundant calculation.

2.4 Note

2.4.1 Do not change the multiplier parameter

Description In the BhavishLossyPool and BhavishNoLossPool contracts, the multiplier parameter should

not be modified. Because the modification can drastically affect the users’ token amount for both minting

and burning.

19 function _getAmountToTransfer(address _user) internal view override returns (uint256) {

20 return balanceOf(_user) / poolData.multiplier;

21 }

22
23 function getAPYRewards(address _provider) public view override returns (uint256 rewards) {

24 if (_calcAmount(_provider) > (balanceOf(_provider) / poolData.multiplier)) {

25 rewards = _calcAmount(_provider) - (balanceOf(_provider) / poolData.multiplier);

26 }

27 }

28
29 function getBalance(address _provider) public view override returns (uint256 amount) {

30 amount = balanceOf(_provider);

20

31 }

32
33 function _calcAmount(address _provider) internal view returns (uint256) {

34 uint256 amount = convertToAssets(providers[_provider].shares);

35 if (amount > providers[_provider].amount)

36 // APY on deposited amount + bg token balance

37 return (balanceOf(_provider) / poolData.multiplier) + amount - providers[_provider].

amount;

38 return balanceOf(_provider) / poolData.multiplier;

39 }

40
41 function afterDeposit(address _user) internal override {

42 _mint(_user, msg.value * poolData.multiplier);

43 }

Listing 2.26: BhavishLossyPool.sol

2.4.2 Ensure the functionality of the price manager

Description The AbstractEP contract retrieves the price of the NYSC equities from the price manager.

However, as of this writing, Chainlink only officially provides price information for the selected NYSC eq-

uities on Polygon 3. Though there are third-party price sources, the validity of these prices may not be

ensured. It is important to guarantee the functionality of the price manager.

2.4.3 Design of the BhavishNoLossPool contract

Description The BhavishNoLossPool contract inherits from AbstractPool and BhavishNoLossGameToken.

As a pool, it allows users to swap the native token for GameToken to predict prices in the markets. The

pool maintains two accounting systems, i.e., the GameToken ERC20 and the user deposit, respectively. It

is worth noting that, in the BhavishNoLossPool contract, the users can withdraw their deposits even if they

lose all GameTokens in the prediction games.

Specifically, the _withdraw function is designed to withdraw the deposit based on the user balance.

The user balance comes from the return value of the _getAmountToTransfer function. This value is

recorded in a storage variable, i.e., providers[_user].amount, which will only be updated when there

is a deposit. Since the BhavishNoLossGameToken contract does not implement the transfer hooks to modify

providers[_user].amount, a user can withdraw all his principal with zero GameToken balance.

125function withdraw() external nonReentrant {

126 require(providers[msg.sender].amount > 0, "no liquidity for user");

127 _withdraw(msg.sender);

128}
129
130function _withdraw(address _user) internal {

131 ProviderDetails storage provider = providers[_user];

132 require(provider.date + poolData.liquidityLockupDuration <= block.timestamp, "cannot withdraw

with in lockup");

133 uint256 balance = _getAmountToTransfer(_user);

3See: https://docs.chain.link/docs/data-feeds/price-feeds/addresses/?network=polygon

21

https://docs.chain.link/docs/data-feeds/price-feeds/addresses/?network=polygon

134 uint256 rewards = getAPYRewards(_user);

135
136 if (provider.date + poolData.rewardLockupDuration <= block.timestamp) {

137 _withdrawFromFarm(rewards + balance, _user);

138 // deduct provider pool profit

139 emit ClaimAPY(_user, rewards);

140 } else {

141 _withdrawFromFarm(balance, _user);

142 poolData.protocolPool += rewards;

143 }

144 // update pool data

145 poolData.totalLiquidity -= getBalance(_user) / poolData.multiplier;

146 poolData.providerPoolProfit -= rewards;

147 provider.amount = 0;

148 poolData.shares -= provider.shares;

149 provider.shares = 0;

150
151 afterWithdraw();

152
153 emit Withdraw(msg.sender, balance);

154}

Listing 2.27: AbstractPool.sol

24 function _getAmountToTransfer(address _user) internal view override returns (uint256) {

25 return providers[_user].amount;

26 }

Listing 2.28: BhavishNoLossPool.sol

Feedback from the Project The design of the NoLoss market is a capital-protected market. Let’s con-

sider a user deposits 100 MATIC, and for example, let’s say it generates 1 MATIC per day as a reward

(AAVE). The user is playing with his reward amount instead of original deposit of 100 MATIC.

2.4.4 Stateless assumption of the MinimalForwarder contract

Description The execute function of the MinimalForwarder contract can be utilized for arbitrary calls. It

is not considered as an issue in this report because this contract is designed to be stateless, which means

the contract has no crypto asset and the execution privilege needs to be strictly restricted.

41 function execute(ForwardRequest calldata req, bytes calldata signature)

42 public

43 payable

44 returns (bool, bytes memory)

45 {

46 require(verify(req, signature), "MinimalForwarder: signature does not match request");

47 require(msg.value == req.value, "Mismatched request and actual value");

48
49 _nonces[req.from] = req.nonce + 1;

50
51 (bool success, bytes memory returndata) = req.to.call{ gas: req.gas, value: req.value }(

52 abi.encodePacked(req.data, req.from)

53);

22

54 // Validate that the relayer has sent enough gas for the call.

55 // See https://ronan.eth.link/blog/ethereum-gas-dangers/

56 assert(gasleft() > req.gas / 63);

57 /*

58 // This change is added by bhavish team

59 // to show the error in explorer for failed txns

60 // otherwise the txn in explorer just shows Fail

61 */

62 require(success, string(returndata));

63
64 return (success, returndata);

65 }

Listing 2.29: MinimalForwarder.sol

2.4.5 RT market is closed on receiving invalid results

Description The AbstractRT contract provides the base contract for the “real time prediction market”.

The real time prediction market relies on the Reality.eth project for reflecting off-chain facts to the on-

chain contracts. Users can make predictions for the results before the final answer is revealed.

Specifically, in the real time prediction market, a market is created with a single associated ques-

tion. The answer to this question would be revealed when the market is closed (but before the market is

resolved).

When a market is created, the createMarket function will invoke the askQuestionWithMinBond func-

tion of the Reality.eth project to attach the associated question.

When the market is resolved, the resolveMarket function will invoke the resultFor function to re-

trieve the final result for the question.

Note that the resultFor function may return invalid results to the resolveMarket function. However,

the invalid result is not handled in the code logic (e.g., may need refund for an invalid result).

144 function resolveMarket(uint256 _marketId) external override onlyOperator(msg.sender) {

145 Market storage market = markets[_marketId];

146 require(block.timestamp >= market.closesAtTimestamp, "market not ended yet");

147
148 // resolve market from resolver (reality eth)

149 // returns answer if finalised

150 // else returns error

151 uint256 outcomeId = uint256(marketResolver.resultFor(market.resolution.questionId));

152 market.resolution.outcomeId = outcomeId;

153 market.state = MarketState.RESOLVED;

154
155 _calculateRewards(_marketId);

156
157 emit MarketResolved(_marketId, outcomeId, market.question);

158 }

Listing 2.30: AbstractRT.sol

Feedback from the Project If there is no result for market, we will close it and provide refund, instead

of resolving it.

23

	1 Introduction
	1.1 About Target Contracts
	1.2 Disclaimer
	1.3 Procedure of Auditing
	1.3.1 Software Security
	1.3.2 DeFi Security
	1.3.3 NFT Security
	1.3.4 Additional Recommendation

	1.4 Security Model

	2 Findings
	2.1 Software Security
	2.1.1 Lack of access control to make predictions
	2.1.2 Being unable to remove markets
	2.1.3 Unhandled corner case when calculating rewards
	2.1.4 No sanity checks for closed markets
	2.1.5 Incorrect argument passed to the refundUsers function
	2.1.6 Ineffective prediction market updating

	2.2 DeFi Security
	2.2.1 No access control for the reinvest function
	2.2.2 Potential precision loss in share calculation
	2.2.3 Token balance manipulation in the AbstractPool contract
	2.2.4 Locked admin fees
	2.2.5 Inconsistent state update
	2.2.6 Incorrect calculation for token balance changes

	2.3 Additional Recommendation
	2.3.1 Remove redundant checks
	2.3.2 Avoid mixed use of msg.sender and the msgSender function
	2.3.3 Remove redundant calculation

	2.4 Note
	2.4.1 Do not change the multiplier parameter
	2.4.2 Ensure the functionality of the price manager
	2.4.3 Design of the BhavishNoLossPool contract
	2.4.4 Stateless assumption of the MinimalForwarder contract
	2.4.5 RT market is closed on receiving invalid results

		2022-10-24T19:12:10+0800
	BlockSec Audit Team

